Ten films selected as finalists

February 15, 2017
“Crazy enough”, “visually very exciting”, “compelling from the start”, “beautiful cinematography”: this is what members of the Quantum Shorts festival shortlisting panel had to say about films selected for screening.
 
The ten shortlisted films were chosen from a total of 203 submissions received during the festival’s 2016 call for entries. We thank all the filmmakers who entered for making our job of choosing just ten so tough!
 
Some of the finalists are dramatic, some funny, some abstract. Some are live-action film, some animation. Each is under five minutes long. But don't just take our word for it, go watch them. Here's the trailer. We list the titles and our synopses below - follow the links there to the full films. 
 
 
Live screenings of the films start February 23 with confirmed events in Waterloo (23 February) and Vancouver (23 February), Canada; Singapore (25-28 February); Glasgow, UK (17 March); and Brisbane, Australia (24 March).  Check this page for more details and links to register.
 
For making the shortlist, the filmmakers receive a $250 award, a one-year digital subscription to Scientific American and certificates. 
 
The festival’s top prize of US $1500 and runner-up prize of US $1000 will now be decided by a panel of eminent judges. The additional People’s Choice prize of $500 will be decided by public vote on the shortlist, with voting open here until 26 March. Prizes will be announced by the end of March.
 
We hope you enjoy the films! 
 
Quantum Shorts 2016: FINALISTS
 
What unites everything on Earth? That we are all ultimately composed of something that is both matter & wave
Submitted by Erin Shea, United States
 
Dancing cats, a watchful observer and a strange co-existence. It’s all you need to understand the essence of quantum mechanics
Submitted by Simone De Liberato, United Kingdom
 
The coin is held fast, but is it heads or tails? As long as the fist remains closed, you are a winner – and a loser
Submitted by Ivan D’Antonio, Italy
 
What happens when a massive star reaches the end of its life? Something that goes way beyond the spectacular, according to this cosmic poem about the infinite beauty of a black hole’s birth
Submitted by Thomas Vanz, France
 
A quantum love triangle, where uncertainty is the only winner
Submitted by Chetan Kotabage, India
 
Picking up a beverage shouldn’t be this hard. And it definitely shouldn’t take you through the multiverse…
Submitted by Adam Welch, United States
 
It’s a tale as old as time: boy meets girl, girl is not as interested as boy hoped. So boy builds spaceship and travels through multi-dimensional reality to find the one universe where they can be together
Submitted by Michael Robertson, South Africa
 
This is one of those days when Tom's morning routine doesn't go to plan – far from it, in fact. The only question is, can he be philosophical about it?
Submitted by Ben Garfield, United Kingdom
 
Only imagination can show us the hidden world inside of fundamental particles 
Submitted by Vladimir Vlasenko, Ukraine
 
Dr. David Long has discovered how to turn matter into waveforms. So why shouldn’t he experiment with his own existence?
Submitted by Bernard Ong, United States

Quantum Theories: A to Z

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

C is for ...
Clocks

The most precise clocks we have are atomic clocks which are powered by quantum mechanics. Besides keeping time, they can also let your smartphone know where you are.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now. This column from Quanta Magazine ​delves into the fundamental physics behind quantum computing.

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

Q is for ...
Quantum States

Quantum states, which represent the state of affairs of a quantum system, change by a different set of rules than classical states.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

S is for ...
Superposition

The feature of a quantum system whereby it exists in several separate quantum states at the same time.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

E is for ...
Ethics

As the world makes more advances in quantum science and technologies, it is time to think about how it will impact lives and how society should respond. This mini-documentary by the Quantum Daily is a good starting point to think about these ethical issues. 

https://www.youtube.com/watch?v=5qc7gpabEhQ&t=2s 

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

S is for ...
Sensors

Researchers are harnessing the intricacies of quantum mechanics to develop powerful quantum sensors. These sensors could open up a wide range of applications.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

T is for ...
Time travel

Is time travel really possible? This article looks at what relativity and quantum mechanics has to say.

T is for ...
Time

The arrow of time is “irreversible”—time goes forward. On microscopic quantum scales, this seems less certain. A recent experiment shows that the forward pointing of the arrow of time remains a fundamental rule for quantum measurements.

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

M is for ...
Maths

Quantum physics is the study of nature at the very small. Mathematics is one language used to formalise or describe quantum phenomena.

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

Copyright © 2024 Centre for Quantum Technologies. All rights reserved.