The Qubits of College Acceptance

Your rating: None
3
Average: 3 (1 vote)
QUANTUM SHORTS 2015: PEOPLE'S CHOICE PRIZE & RUNNER UP, YOUTH CATEGORY
 
I laid the creamy white envelopes out on the table in a neat array.  Fat envelopes addressed to Ms. Eleanor Turaski.  I generally go by Lily, so the use of my formal name was an indication of the importance of the contents of these envelopes.  In fact, these envelopes contained the information necessary to determine the course of my future.  What a frightening concept—people are frightened of artificial intelligence in the form of robots and computers, but these envelopes, mere paper, contained the power to alter my life unchangeably.  College acceptance letters.  You either welcome them, or you fear them.  Or both.  My state of emotions was indeterminate.  I didn’t know whether I was excited or scared, and by virtue of not knowing, I was both excited and scared.  
 
Harvard, Stanford, MIT, Caltech, Hopkins, and all the others proudly displayed their school logos in the upper left corners of the otherwise indistinguishable white envelopes, teasing me, tempting me.  If it comes to a battle of the wills between me and these envelopes, I must prevail.  Logica Omnia Vincit.  Logic conquers all.  The way to emerge victorious is to paint the envelopes into a logical corner, a black hole from which they have no escape.  
 
I do not know what answer is printed on the letters within the envelopes.  There are only two possibilities: yes or no.  In the wider world of reality, life is not always so black and white; often there is a gray region of indeterminacy.  Yet for these letters there are exactly two possibilities: the answer is either yes or no.  At least, that is what the envelopes want me to think.  In fact, there is a third answer: yes and no.  Because I have not yet read the printed letters, the two options are inconceivably intertwined into a third state of superposition.  Until I open the letters, oh-so-slowly and oh-so-carefully, so as not to rip the edges, the answer is yes.  It is also no, but I will focus on the yes.  As soon as I observe the state of my acceptance, the condition is fixed, and the seeming paradox resolves.  Yet there is comfort in the paradox.  There is comfort in knowing that I have the power to change the course of my life.  It is not the envelopes that decide my fate; it is my choice to observe the envelopes that decides my fate.  I have won the battle against the envelopes.  I have been accepted into all eight Ivy League schools.  Of course, I have also been denied by all eight Ivy League schools, but again I focus on the yes.  Everything is possible.  
 
My dad comes home.  He asks if any letters came for me today.  I tell him that they have all arrived now, and he asks me what they said.  I tell him I was accepted into all of them.  He walks over, sees the row of unopened letters, and cocks an eyebrow.  “How do you know….” He starts.  
 
“Well, it’s like Schrodinger’s cat.”   
 
“I’ve had enough of that darn cat.  Why can’t it make up its mind already?”
 
“The same reason I have decided I am going to major in Undecided.” 
 
We hear the sound of ripping paper.  By the time we turn around, my mother is holding open a neatly creased letter, and the mangled envelope lies open on the table.  
 
About the Author: 
Lily is a high school junior. She can't wait until next year when she will start receiving her fat envelopes!
Share this fiction

Quantum Theories: A to Z

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

S is for ...
Superposition

The feature of a quantum system whereby it exists in several separate quantum states at the same time.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

E is for ...
Ethics

As the world makes more advances in quantum science and technologies, it is time to think about how it will impact lives and how society should respond. This mini-documentary by the Quantum Daily is a good starting point to think about these ethical issues. 

https://www.youtube.com/watch?v=5qc7gpabEhQ&t=2s 

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer

T is for ...
Time

The arrow of time is “irreversible”—time goes forward. On microscopic quantum scales, this seems less certain. A recent experiment shows that the forward pointing of the arrow of time remains a fundamental rule for quantum measurements.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now. This column from Quanta Magazine ​delves into the fundamental physics behind quantum computing.

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

Q is for ...
Quantum States

Quantum states, which represent the state of affairs of a quantum system, change by a different set of rules than classical states.

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

S is for ...
Sensors

Researchers are harnessing the intricacies of quantum mechanics to develop powerful quantum sensors. These sensors could open up a wide range of applications.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

C is for ...
Clocks

The most precise clocks we have are atomic clocks which are powered by quantum mechanics. Besides keeping time, they can also let your smartphone know where you are.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

M is for ...
Maths

Quantum physics is the study of nature at the very small. Mathematics is one language used to formalise or describe quantum phenomena.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

T is for ...
Time travel

Is time travel really possible? This article looks at what relativity and quantum mechanics has to say.

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

Copyright © 2024 Centre for Quantum Technologies. All rights reserved.