Quantum SuperImposition

Rate: 
Your rating: None
3
Average: 3 (1 vote)
Status: 

SHORTLISTED | Quantum Shorts 2020

About the Film: 

Quantum physics and sibling rivalry intersect in this alternate reality comedy. A family project by Paul, Felix, Petra and Alfie Ratner, Quantum SuperImposition presents a funny and original take on quantum superposition and entanglement.

Researchers in 2018 designed an experiment to find out what really happens in a superposition. Read Scientific American’s article on the topic: https://www.scientificamerican.com/article/quantum-physics-may-be-even-spookier-than-you-think/

Interview:

Please tell us about yourself and the team that made the film.

I am a writer, filmmaker, and educator. I have written for years for BigThink.com and other outlets on transformative scientific research, history, and current events. My award-winning films like the true-life adventure Moses on the Mesa and the science documentary The Caveman of Atomic City have played at film festivals around the world. Felix is my son, an emerging filmmaker (he is ten), and a big physics aficionado. He also loves programming video games. Felix has written and directed dozens of short films. Petra is a producer and organizer of the Sarasota Film Festival, while Alfie is the youngest member of the team – he is a five-year-old kindergartener who enjoys being mischievous.

How did you come up with the idea for your film?

We like discussing physics ideas and were fascinated with quantum superposition. We also found it weird and potentially funny, so we were looking to find a way to represent this somewhat confusing concept in an amusing but thought-provoking way. Having two funny kids in the mix who already bother each other all the time gave us the theme of brother rivalry. We also wanted to simply show (without leaving our house) a situation where multiple states of reality come to exist at the same time and going in and out of a room was an easy enough thing to pull off.

What was the quantum inspiration for the film?

The quantum inspirations for our short were the concepts of quantum superposition and quantum entanglement. We wanted to show them in unexpected and memorable ways. I am fascinated in understanding the way the universe works and as an educator always looks for ways to explain very complex thoughts in engaging and clear ways. Felix finds remarkable the idea of super-small things that have big implications on the entire world and our whole existence. 

Please share with us an interesting detail about you how made the movie.

An interesting detail about production — this was a family project and we made the film without leaving our home, because of a COVID-19 lockdown in Florida. We used green screens to make our storytelling more expansive. 

What reaction do you hope for from viewers?

We hope the viewers will laugh at the funny bits and think about the concepts involved. 

What is your favourite science-inspired or sci-fi movie?

Felix’s favourite is Star Wars: Return of the Jedi. My favourite film is Stalker by Tarkovsky.

What does being a Quantum Shorts finalist mean to you?

We love being Quantum Shorts Finalists as the competition has collected a great group of science and media experts for judges and it is an honour to be considered for awards. We also love that the competition is international in scope. We enjoy making projects that reach people around the world. 

Is there anything else you would like to tell us about you or your film?

We would like to make more films inspired by quantum physics, expanding what people know about these important scientific ideas that can transform the way we see our life.

About the filmmaker(s): 

Paul Ratner is a writer, filmmaker, and educator. Felix Ratner is an emerging filmmaker.

Share this film

Quantum Theories: A to Z

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

S is for ...
Superposition

The feature of a quantum system whereby it exists in several separate quantum states at the same time.

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

T is for ...
Time

The arrow of time is “irreversible”—time goes forward. On microscopic quantum scales, this seems less certain. A recent experiment shows that the forward pointing of the arrow of time remains a fundamental rule for quantum measurements.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

E is for ...
Ethics

As the world makes more advances in quantum science and technologies, it is time to think about how it will impact lives and how society should respond. This mini-documentary by the Quantum Daily is a good starting point to think about these ethical issues. 

https://www.youtube.com/watch?v=5qc7gpabEhQ&t=2s 

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

S is for ...
Sensors

Researchers are harnessing the intricacies of quantum mechanics to develop powerful quantum sensors. These sensors could open up a wide range of applications.

T is for ...
Time travel

Is time travel really possible? This article looks at what relativity and quantum mechanics has to say.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

Q is for ...
Quantum States

Quantum states, which represent the state of affairs of a quantum system, change by a different set of rules than classical states.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now. This column from Quanta Magazine ​delves into the fundamental physics behind quantum computing.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

M is for ...
Maths

Quantum physics is the study of nature at the very small. Mathematics is one language used to formalise or describe quantum phenomena.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

C is for ...
Clocks

The most precise clocks we have are atomic clocks which are powered by quantum mechanics. Besides keeping time, they can also let your smartphone know where you are.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

Copyright © 2024 Centre for Quantum Technologies. All rights reserved.